7,185 research outputs found

    Virtual liver biopsy: image processing and 3D visualization

    Get PDF

    Commuting Position and Momentum Operators, Exact Decoherence and Emergent Classicality

    Full text link
    Inspired by an old idea of von Neumann, we seek a pair of commuting operators X,P which are, in a specific sense, "close" to the canonical non-commuting position and momentum operators, x,p. The construction of such operators is related to the problem of finding complete sets of orthonormal phase space localized states, a problem severely constrained by the Balian-Low theorem. Here these constraints are avoided by restricting attention to situations in which the density matrix is reasonably decohered (i.e., spread out in phase space). Commuting position and momentum operators are argued to be of use in discussions of emergent classicality from quantum mechanics. In particular, they may be used to give a discussion of the relationship between exact and approximate decoherence in the decoherent histories approach to quantum theory.Comment: 28 pages, RevTe

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe

    Quantum Backflow States from Eigenstates of the Regularized Current Operator

    Full text link
    We present an exhaustive class of states with quantum backflow -- the phenomenon in which a state consisting entirely of positive momenta may have negative current and the probability flows in the opposite direction to the momentum. They are characterized by a general function of momenta subject to very weak conditions. Such a family of states is of interest in the light of a recent experimental proposal to measure backflow. We find one particularly simple state which has surprisingly large backflow -- about 41 percent of the lower bound on flux derived by Bracken and Melloy. We study the eigenstates of a regularized current operator and we show how some of these states, in a certain limit, lead to our class of backflow states. This limit also clarifies the correspondence between the spectrum of the regularized current operator, which has just two non-zero eigenvalues in our chosen regularization, and the usual current operator.Comment: 16 pages, 2 figure

    The role of the quantum properties of gravitational radiation in the dete ction of gravitational waves

    Get PDF
    The role that the quantum properties of a gravitational wave could play in the detection of gravitational radiation is analyzed. It is not only corroborated that in the current laser-interferometric detectors the resolution of the experimental apparatus could lie very far from the corresponding quantum threshold (thus the backreaction effect of the measuring device upon the gravitational wave is negligible), but it is also suggested that the consideration of the quantum properties of the wave could entail the definition of dispersion of the measurement outputs. This dispersion would be a function not only of the sensitivity of the measuring device, but also of the interaction time (between measuring device and gravitational radiation) and of the arm length of the corresponding laser- interferometer. It would have a minimum limit, and the introduction of the current experimental parameters insinuates that the dispersion of the existing proposals could lie very far from this minimum, which means that they would show a very large dispersion.Comment: 19 pages, Latex (use epsfig.sty
    • …
    corecore